
Hans-Petter Halvorsen

https://www.halvorsen.blog

Create a minimal API
with ASP.NET Core

with CRUD functionality

Contents
• We will use ASP.NET Core to create a Web/REST/HTTP

API.
– ASP.NET is a server-side framework for creating web pages and

web contents.
• We will create a so-called “Minimal API with ASP.NET

Core” and we will use the “ASP.NET Core Empty”
template in Visual Studio.

• The API will have CRUD functionality
– We will implement a minimal CRUD API that Create, Read,

Update and Delete data in the Database.
– We will use SQL Server as the Database system.

• We will use Visual Studio as the code editor.

Hans-Petter Halvorsen

https://www.halvorsen.blog

Introduction

Table of Contents

Introduction
• We can create Web/REST/HTTP APIs in Visual

Studio and C# using the ASP.NET Web
framework.

• This can be done in many ways, and Microsoft
also continuously updates Visual Studio with
new approaches and new templates.

• A new approach from Microsoft is called
“Minimal API with ASP.NET Core” and you use
the “ASP.NET Core Empty” template in Visual
Studio.

https://learn.microsoft.com/en-us/aspnet/core/tutorials/min-web-api

https://learn.microsoft.com/en-us/aspnet/core/tutorials/min-web-api

Minimal APIs
• ASP.NET Core supports two approaches to creating APIs: a

controller-based approach and minimal APIs.
• Minimal APIs are architected to create HTTP APIs with

minimal dependencies.
• They're ideal for microservices and apps that want to

include only the minimum files, features, and
dependencies in ASP.NET Core.

• Basically, Minimal APIs is a new simplified approach for
creating APIs with ASP.NET Core.

• This tutorial teaches the basics of building a minimal API
with ASP.NET Core.

https://learn.microsoft.com/en-us/aspnet/core/tutorials/min-web-api

https://learn.microsoft.com/en-us/aspnet/core/tutorials/min-web-api

ASP.NET
• ASP.NET is a framework for web development.
• You can use ASP.NET for creating Web Applications or

Web/REST APIs.
• ASP.NET is based on .NET and C#.
• What is the difference between ASP.NET and .NET

frameworks?
– ASP.NET is specifically designed for web development, while the

.NET framework covers a broader range of application types,
including Windows desktop, mobile, and web applications.

• Homepage: https://dotnet.microsoft.com/en-
us/apps/aspnet

https://dotnet.microsoft.com/en-us/apps/aspnet
https://dotnet.microsoft.com/en-us/apps/aspnet

API
• Application Programming Interface (API).
• An API is a way for two or more computer programs or

components to communicate with each other.
• It is a type of software interface that offers a service to

other software.
• APIs come in many shapes, some examples are SOAP

API, REST API, GraphQL API, etc.
• Most programming languages today have

components/libraries that can be used both to create
APIs and to consume APIs (using existing APIs).

Web API
• We can create/use APIs for internal use inside an Application or

between 2 or more Applications.
• Basically, an API can be just a Class with Methods that you use

several places inside an Application or that you share between
multiple Applications.

• A set of Stored Procedures in a Database can also be an API.
• When the Application that consume/use the API is on a local PC

and the API itself is located on a Server, we can talk about so-
called “Web APIs”.

• Such Web APIs also very often perform CRUD operations against a
Database located on the Web.

• Normally it is not allowed to connect directly to a Database located
in the Cloud from a local computer unless you configure and give
access to the IP addresses for those clients.

CRUD: Create, Read, Update, Delete Data

Web/REST API
Clients

Database

Application

Server

Database

Server

API

Application

Clients

Application

Application

Cloud/Internet
/Network

Cloud/Internet
/Network

Normally it is not allowed to connect directly
to a Database located in the Cloud from a
local computer unless you configure and give
access to the IP addresses for those clients.

HTTP

REST API

Consumer
Producer

REST API

HTTP

The Application that uses
or consume the REST API.

Request

Response
Database

HTTP/HTTPS
• HTTPS is not a separate protocol, but a combination of regular

HTTP over an encrypted SSL (Secure Sockets Layer) or TLS
(Transport Layer Security) connection.

• HTTP consists of different methods:
– GET – This method is used to retrieve information from the server.
– POST – This is used to send data to the server. Typically used to store

data from a web page (an HTTML Form) to ,e.g., a database.
– PUT – This is used to update information on the server.
– DELETE – This is used to delete information on the server.

• You usually refer to these four methods as CRUD operations
because they allow you to Create (POST), Read (GET), Update
(PUT), and Delete (DELETE) resources, such as information in a
database.

GET and POST are by far the most used of these HTTP methods

REST API

Client Server

HTTP URL

JSON
Database

(or XML)

GET/POST/PUT/DELETE

REST APIResponse

Request

Application

JSON
• When it comes to Web APIs and REST APIs

JSON is the standard for the data format.
• Example:

https://en.wikipedia.org/wiki/JSON

{

"Name": "John Wayne",

"Work": "Actor",

"Age": 52

"Children": [

"Lisa",

"Thomas",

"Knut"

]

}

https://en.wikipedia.org/wiki/JSON

Why use an API?
• Normally it is not allowed to connect directly to a Database

located in the Cloud from a local computer
– unless you configure and give access to the IP addresses for those

clients.
– Typically, your IT Department don’t allow that

• You can use the same API for multiple Applications, let say you
have a Desktop App, an iPhone App and an Android App
– All can use the same API
– You save time and money by developing only once instead of specific

code for each application.
• You want to expose data to externals services or persons, e.g., a

Weather API that can be used by persons, external apps or
services. Other examples: Hotel/plane reservations and ticket
systems

API Summary
• “Web APIs”, “REST APIs” or “HTTP APIs” are basically

the same.
• It is more or less just different names for the same.
• They use the request/response model.
• They all communicate via Internet and use HTTP as

communication protocol.
• And they use JSON (or sometimes XML) as Data

Format.
• Very often they implement CRUD functionality.

API Test Tools
• Postman. Homepage:

https://www.postman.com
• Insomnia. Homepage: https://insomnia.rest

https://www.postman.com/
https://insomnia.rest/

References
• Tutorial: Create a minimal API with ASP.NET Core:

https://learn.microsoft.com/en-
us/aspnet/core/tutorials/min-web-api

• Build a web API with minimal API, ASP.NET Core, and .NET:
https://learn.microsoft.com/en-
gb/training/modules/build-web-api-minimal-api/

• Back-end Web Development with .NET for Beginners:
https://www.youtube.com/playlist?list=PLdo4fOcmZ0oW
unQnm3WnZxJrseIw2zSAk

• Use .http files in Visual Studio 2022:
https://learn.microsoft.com/en-us/aspnet/core/test/http-
files

https://learn.microsoft.com/en-us/aspnet/core/tutorials/min-web-api
https://learn.microsoft.com/en-us/aspnet/core/tutorials/min-web-api
https://learn.microsoft.com/en-gb/training/modules/build-web-api-minimal-api/
https://learn.microsoft.com/en-gb/training/modules/build-web-api-minimal-api/
https://www.youtube.com/playlist?list=PLdo4fOcmZ0oWunQnm3WnZxJrseIw2zSAk
https://www.youtube.com/playlist?list=PLdo4fOcmZ0oWunQnm3WnZxJrseIw2zSAk
https://learn.microsoft.com/en-us/aspnet/core/test/http-files
https://learn.microsoft.com/en-us/aspnet/core/test/http-files

Hans-Petter Halvorsen

https://www.halvorsen.blog

Getting Started

Table of Contents

Visual Studio Template
You can use one of the following
templates in Visual Studio:

Visual Studio Project

Hello World

Endpoints Explorer

Test the API Endpoints

Hans-Petter Halvorsen

https://www.halvorsen.blog

CRUD Example

Table of Contents

CRUD API Example
• We will create a Web/REST/HTTP API with CRUD

functionality.
– Meaning we will Insert (Create), Read, Update and

Delete data in a Database.
• We will start by creating a Database and Table using

SQL Server and SQL Server Management Studio.
• Then we will create the ASP.NET/C# code for the Web

API.
• We will test the API using the Endpoints Explorer in

Visual Studio.

Tools
The following tools will be used in this example:
• SQL Server

– SQL Server Management Studio

• Visual Studio
• ASP.NET
• C#

Hans-Petter Halvorsen

https://www.halvorsen.blog

Database

Table of Contents

CRUD and Database
• We will create an API with CRUD

functionality
• We will implement a minimal CRUD API that

Create, Read, Update and Delete data in the
Database.

• We will use SQL Server as the Database
system.

Database
CREATE TABLE [AUTHOR]

(

[AuthorId] [int] IDENTITY(1, 1) NOT NULL PRIMARY KEY,

[AuthorName] [varchar](50) NOT NULL UNIQUE,

[Address] [varchar](50) NULL,

[Phone] [varchar](50) NULL,

[PostCode] [varchar](50) NULL,

[PostAddress] [varchar](50) NULL,

)

CREATE TABLE [BOOK]

(

[BookId] [int] IDENTITY(1, 1) NOT NULL PRIMARY KEY,

[Title] [varchar](50) NOT NULL UNIQUE,

[ISBN] [varchar](20) NOT NULL,

[PublisherId] [int] NOT NULL FOREIGN KEY REFERENCES [PUBLISHER] ([PublisherId]),

[AuthorId] [int] NOT NULL FOREIGN KEY REFERENCES [AUTHOR] ([AuthorId]),

[CategoryId] [int] NOT NULL FOREIGN KEY REFERENCES [CATEGORY] ([CategoryId]),

[Description] [varchar](1000) NULL,

[Year] [date] NULL,

[Edition] [int] NULL,

[AverageRating] [float] NULL,

)

CREATE TABLE [CATEGORY]

(

[CategoryId] [int] IDENTITY(1, 1) NOT NULL PRIMARY KEY,

[CategoryName] [varchar](50) NOT NULL UNIQUE,

[Description] [varchar](1000) NULL,

)

CREATE TABLE [PUBLISHER]

(

[PublisherId] [int] IDENTITY(1, 1) NOT NULL PRIMARY KEY,

[PublisherName] [varchar](50) NOT NULL UNIQUE,

[Description] [varchar](1000) NULL,

[Address] [varchar](50) NULL,

[Phone] [varchar](50) NULL,

[PostCode] [varchar](50) NULL,

[PostAddress] [varchar](50) NULL,

[EMail] [varchar](50) NULL,

)

Hans-Petter Halvorsen

https://www.halvorsen.blog

Visual Studio

Table of Contents

Visual Studio

CRUD Database Class
Books.cs

GetBooks
public List<Book> GetBooks()
{

List<Book> bookList = new List<Book>();

SqlConnection con = new SqlConnection(connectionString);
string selectSQL = "select BookId, Title, Isbn, PublisherName, AuthorName, CategoryName from GetBookData";
con.Open();
SqlCommand cmd = new SqlCommand(selectSQL, con);
SqlDataReader dr = cmd.ExecuteReader();

if (dr != null)
{

while (dr.Read())
{

Book book = new Book();
book.BookId = Convert.ToInt32(dr["BookId"]);
book.Title = dr["Title"].ToString();
book.Isbn = dr["ISBN"].ToString();
book.PublisherName = dr["PublisherName"].ToString();
book.AuthorName = dr["AuthorName"].ToString();
book.CategoryName = dr["CategoryName"].ToString();
bookList.Add(book);

}
}
return bookList;

}

Books.cs

GetBookData
public Book GetBookData(int bookId)
{

SqlConnection con = new SqlConnection(connectionString);
string selectSQL = "select BookId, Title, Isbn, PublisherName, AuthorName, CategoryName from GetBookData where BookId = " +

bookId;
con.Open();
SqlCommand cmd = new SqlCommand(selectSQL, con);
SqlDataReader dr = cmd.ExecuteReader();

Book book = new Book();

if (dr != null)
{

while (dr.Read())
{

book.BookId = Convert.ToInt32(dr["BookId"]);
book.Title = dr["Title"].ToString();
book.Isbn = dr["ISBN"].ToString();
book.PublisherName = dr["PublisherName"].ToString();
book.AuthorName = dr["AuthorName"].ToString();
book.CategoryName = dr["CategoryName"].ToString();

}
}
return book;

}

Books.cs

CreateBook
public void CreateBook(Book book)
{

try
{

using (SqlConnection con = new SqlConnection(connectionString))
{

SqlCommand cmd = new SqlCommand("CreateBook", con);
cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.Add(new SqlParameter("@Title", book.Title));
cmd.Parameters.Add(new SqlParameter("@Isbn", book.Isbn));
cmd.Parameters.Add(new SqlParameter("@PublisherName", book.PublisherName));
cmd.Parameters.Add(new SqlParameter("@AuthorName", book.AuthorName));
cmd.Parameters.Add(new SqlParameter("@CategoryName", book.CategoryName));

con.Open();
cmd.ExecuteNonQuery();
con.Close();

}
}
catch (Exception ex)
{

throw ex;
}

}

Books.cs

EditBook
public void EditBook(int bookId, Book book)
{

try
{

using (SqlConnection con = new SqlConnection(connectionString))
{

SqlCommand cmd = new SqlCommand("UpdateBook", con);
cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.Add(new SqlParameter("@BookId", bookId));
cmd.Parameters.Add(new SqlParameter("@Title", book.Title));
cmd.Parameters.Add(new SqlParameter("@Isbn", book.Isbn));
cmd.Parameters.Add(new SqlParameter("@PublisherName", book.PublisherName));
cmd.Parameters.Add(new SqlParameter("@AuthorName", book.AuthorName));
cmd.Parameters.Add(new SqlParameter("@CategoryName", book.CategoryName));

con.Open();
cmd.ExecuteNonQuery();
con.Close();

}
}
catch (Exception ex)
{

throw ex;
}

}

Books.cs

DeleteBook
public void DeleteBook(int bookId)
{

try
{

using (SqlConnection con = new SqlConnection(connectionString))
{

SqlCommand cmd = new SqlCommand("DeleteBook", con);
cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.Add(new SqlParameter("@BookId", bookId));

con.Open();
cmd.ExecuteNonQuery();
con.Close();

}
}
catch (Exception ex)
{

throw ex;
}

}

Books.cs

Program.cs

Program.cs
using MinimalBookWebAPI.Models;

var builder = WebApplication.CreateBuilder(args);
var app = builder.Build();

app.MapGet("/books", () =>
{

List<Book> bookList = new List<Book>();
Book book = new Book();
bookList = book.GetBooks();
return bookList;

});

app.MapGet("/books/{id}", (int id) =>
{

Book book = new Book();
book = book.GetBookData(id);
return book;

});

app.MapPost("/newbook", (Book book) =>
{

book.CreateBook(book);

return "Book has been created";
});

app.MapPut("/book/{id}", (int id, Book book) =>
{

book.EditBook(id, book);
return "Book has been updated";

});

app.MapDelete("/book/{id}", (int id) =>
{

Book book = new Book();
book.DeleteBook(id);
return "Book has been deleted";

});

app.MapGet("/", () => "Welcome to Minimal Book Web API");

app.Run();

Program.cs

Testing the API functions
• We will test the different API functions
• We can test the functions using the Endpoints

Explorer in Visual Studio
• We can test it using the Web Browser
• We can also test it using an AI tool like

Postman, etc.
• We can test it using different programming

languages, like Python, etc.

GET /books

We can test the GET method
in the Web Browser

GET /books

We can test the method using the
Endpoints Explorer in Visual Studio

GET /books/{id}

We can test the GET method
in the Web Browser

GET /books/{id}

We can test the method using the
Endpoints Explorer in Visual Studio

POST /newbook

We can test the method using the
Endpoints Explorer in Visual Studio

PUT /book/{id}

We can test the method using the
Endpoints Explorer in Visual Studio

DELETE /book/{id}

We see Book with BookId=6 has been deleted

We can test the method
using the Endpoints
Explorer in Visual Studio

Summary
• We have created a so-called Minimal API in

Visual Studio using ASP.NET Core and C#.
• The API has basic CRUD functionality that

Create, Read, Update and Delete data in the
SQL Server database.

• We tested the API methods using the Endpoint
Explorer in Visual Studio.

• The code is very simplified for showing the basic
principles of creating such a CRUD API.

Hans-Petter Halvorsen
University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

	Start
	Slide 1: Create a minimal API with ASP.NET Core with CRUD functionality
	Slide 2: Contents

	Introduction
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Minimal APIs
	Slide 6: ASP.NET
	Slide 7: API
	Slide 8: Web API
	Slide 9: Web/REST API
	Slide 10: REST API
	Slide 11: HTTP/HTTPS
	Slide 12: REST API
	Slide 13: JSON
	Slide 14: Why use an API?
	Slide 15: API Summary
	Slide 16: API Test Tools
	Slide 17: References

	Getting Started
	Slide 18: Getting Started
	Slide 19: Visual Studio Template
	Slide 20: Visual Studio Project
	Slide 21: Hello World
	Slide 22: Endpoints Explorer
	Slide 23: Test the API Endpoints

	Practical Example
	Slide 24: CRUD Example
	Slide 25: CRUD API Example
	Slide 26: Tools

	Database
	Slide 27: Database
	Slide 28: CRUD and Database
	Slide 29: Database

	Section2
	Slide 30: Visual Studio
	Slide 31: Visual Studio
	Slide 32: CRUD Database Class
	Slide 33: GetBooks
	Slide 34: GetBookData
	Slide 35: CreateBook
	Slide 36: EditBook
	Slide 37: DeleteBook
	Slide 38: Program.cs
	Slide 39: Program.cs
	Slide 40: Testing the API functions
	Slide 41: GET /books
	Slide 42: GET /books
	Slide 43: GET /books/{id}
	Slide 44: GET /books/{id}
	Slide 45: POST /newbook
	Slide 46: PUT /book/{id}
	Slide 47: DELETE /book/{id}

	Finished
	Slide 48: Summary
	Slide 49

