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Create a minimal API 
with ASP.NET Core 

with CRUD functionality



Contents
• We will use  ASP.NET Core to create a Web/REST/HTTP 

API.
– ASP.NET is a server-side framework for creating web pages and 

web contents.
• We will create a so-called “Minimal API with ASP.NET 

Core” and we will use the “ASP.NET Core Empty” 
template in Visual Studio.

• The API will have CRUD functionality
– We will implement a minimal CRUD API that Create, Read, 

Update and Delete data in the Database.
– We will use SQL Server as the Database system.

• We will use Visual Studio as the code editor.
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Introduction
• We can create Web/REST/HTTP APIs in Visual 

Studio and C# using the ASP.NET Web 
framework.

• This can be done in many ways, and Microsoft 
also continuously updates Visual Studio with 
new approaches and new templates.

• A new approach from Microsoft is called 
“Minimal API with ASP.NET Core” and you use 
the “ASP.NET Core Empty” template in Visual 
Studio.

https://learn.microsoft.com/en-us/aspnet/core/tutorials/min-web-api

https://learn.microsoft.com/en-us/aspnet/core/tutorials/min-web-api


Minimal APIs
• ASP.NET Core supports two approaches to creating APIs: a 

controller-based approach and minimal APIs.
• Minimal APIs are architected to create HTTP APIs with 

minimal dependencies. 
• They're ideal for microservices and apps that want to 

include only the minimum files, features, and 
dependencies in ASP.NET Core.

• Basically, Minimal APIs is a new simplified approach for 
creating APIs with ASP.NET Core.

• This tutorial teaches the basics of building a minimal API 
with ASP.NET Core. 

https://learn.microsoft.com/en-us/aspnet/core/tutorials/min-web-api

https://learn.microsoft.com/en-us/aspnet/core/tutorials/min-web-api


ASP.NET
• ASP.NET is a framework for web development.
• You can use ASP.NET  for creating Web Applications or 

Web/REST APIs.
• ASP.NET is based on .NET and C#.
• What is the difference between ASP.NET and .NET 

frameworks?
– ASP.NET is specifically designed for web development, while the 

.NET framework covers a broader range of application types, 
including Windows desktop, mobile, and web applications.

• Homepage: https://dotnet.microsoft.com/en-
us/apps/aspnet

https://dotnet.microsoft.com/en-us/apps/aspnet
https://dotnet.microsoft.com/en-us/apps/aspnet


API
• Application Programming Interface (API).
• An API is a way for two or more computer programs or 

components to communicate with each other.
• It is a type of software interface that offers a service to 

other software.
• APIs come in many shapes, some examples are SOAP 

API, REST API, GraphQL API, etc.
• Most programming languages today have 

components/libraries that can be used both to create 
APIs and to consume APIs (using existing APIs).



Web API
• We can create/use APIs for internal use inside an Application or 

between 2 or more Applications.
• Basically, an API can be just a Class with Methods that you use 

several places inside an Application or that you share between 
multiple Applications.

• A set of Stored Procedures in a Database can also be an API.
• When the Application that consume/use the API is on a local PC 

and the API itself is located on a Server, we can talk about so-
called “Web APIs”.

• Such Web APIs also very often perform CRUD operations against a 
Database located on the Web.

• Normally it is not allowed to connect directly to a Database located 
in the Cloud from a local computer unless you configure and give 
access to the IP addresses for those clients.

CRUD: Create, Read, Update, Delete Data
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HTTP/HTTPS
• HTTPS is not a separate protocol, but a combination of regular 

HTTP over an encrypted SSL (Secure Sockets Layer) or TLS 
(Transport Layer Security) connection.

• HTTP consists of different methods:
– GET – This method is used to retrieve information from the server.
– POST – This is used to send data to the server. Typically used to store 

data from a web page (an HTTML Form) to ,e.g., a database.
– PUT – This is used to update information on the server.
– DELETE – This is used to delete information on the server.

• You usually refer to these four methods as CRUD operations 
because they allow you to Create (POST), Read (GET), Update 
(PUT), and Delete (DELETE) resources, such as information in a 
database.

GET and POST are by far the most used of these HTTP methods
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JSON
• When it comes to Web APIs and REST APIs 

JSON is the standard for the data format.
• Example:

https://en.wikipedia.org/wiki/JSON

{

"Name": "John Wayne",

"Work": "Actor",

"Age": 52

"Children": [

"Lisa",

"Thomas",

"Knut"

]

}

https://en.wikipedia.org/wiki/JSON


Why use an API?
• Normally it is not allowed to connect directly to a Database 

located in the Cloud from a local computer
– unless you configure and give access to the IP addresses for those 

clients.
– Typically, your IT Department don’t allow that

• You can use the same API for multiple Applications, let say you 
have a Desktop App, an iPhone App and an Android App
– All can use the same API
– You save time and money by developing only once instead of specific 

code for each application.
• You want to expose data to externals services or persons, e.g., a 

Weather API that can be used by persons, external apps or 
services. Other examples: Hotel/plane reservations and ticket 
systems



API Summary
• “Web APIs”, “REST APIs” or “HTTP APIs” are basically 

the same.
• It is more or less just different names for the same.
• They use the request/response model.
• They all communicate via Internet and use HTTP as 

communication protocol.
• And they use JSON (or sometimes XML) as Data 

Format.
• Very often they implement CRUD functionality.



API Test Tools
• Postman. Homepage: 

https://www.postman.com
• Insomnia. Homepage: https://insomnia.rest

https://www.postman.com/
https://insomnia.rest/


References
• Tutorial: Create a minimal API with ASP.NET Core: 

https://learn.microsoft.com/en-
us/aspnet/core/tutorials/min-web-api

• Build a web API with minimal API, ASP.NET Core, and .NET: 
https://learn.microsoft.com/en-
gb/training/modules/build-web-api-minimal-api/

• Back-end Web Development with .NET for Beginners: 
https://www.youtube.com/playlist?list=PLdo4fOcmZ0oW
unQnm3WnZxJrseIw2zSAk

• Use .http files in Visual Studio 2022: 
https://learn.microsoft.com/en-us/aspnet/core/test/http-
files

https://learn.microsoft.com/en-us/aspnet/core/tutorials/min-web-api
https://learn.microsoft.com/en-us/aspnet/core/tutorials/min-web-api
https://learn.microsoft.com/en-gb/training/modules/build-web-api-minimal-api/
https://learn.microsoft.com/en-gb/training/modules/build-web-api-minimal-api/
https://www.youtube.com/playlist?list=PLdo4fOcmZ0oWunQnm3WnZxJrseIw2zSAk
https://www.youtube.com/playlist?list=PLdo4fOcmZ0oWunQnm3WnZxJrseIw2zSAk
https://learn.microsoft.com/en-us/aspnet/core/test/http-files
https://learn.microsoft.com/en-us/aspnet/core/test/http-files
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Visual Studio Template
You can use one of the following 
templates in Visual Studio:



Visual Studio Project



Hello World



Endpoints Explorer



Test the API Endpoints



Hans-Petter Halvorsen

https://www.halvorsen.blog

CRUD Example

Table of Contents



CRUD API Example
• We will create a Web/REST/HTTP API with CRUD

functionality.
– Meaning we will Insert (Create), Read, Update and 

Delete data in a Database.
• We will start by creating a Database and Table using 

SQL Server and SQL Server Management Studio.
• Then we will create the ASP.NET/C# code for the Web 

API.
• We will test the API using the Endpoints Explorer in 

Visual Studio.



Tools
The following tools will be used in this example:
• SQL Server

– SQL Server Management Studio

• Visual Studio 
• ASP.NET
• C#
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CRUD and Database
• We will create an API with CRUD

functionality
• We will implement a minimal CRUD API that 

Create, Read, Update and Delete data in the 
Database.

• We will use SQL Server as the Database 
system.



Database
CREATE TABLE [AUTHOR]

(

[AuthorId] [int] IDENTITY(1, 1) NOT NULL PRIMARY KEY,

[AuthorName] [varchar](50) NOT NULL UNIQUE,

[Address] [varchar](50) NULL,

[Phone] [varchar](50) NULL,

[PostCode] [varchar](50) NULL,

[PostAddress] [varchar](50) NULL,

) 

CREATE TABLE [BOOK]

(

[BookId] [int] IDENTITY(1, 1) NOT NULL PRIMARY KEY,

[Title] [varchar](50) NOT NULL UNIQUE,

[ISBN] [varchar](20) NOT NULL,

[PublisherId] [int] NOT NULL FOREIGN KEY REFERENCES [PUBLISHER] ([PublisherId]),

[AuthorId] [int] NOT NULL FOREIGN KEY REFERENCES [AUTHOR] ([AuthorId]),

[CategoryId] [int] NOT NULL FOREIGN KEY REFERENCES [CATEGORY] ([CategoryId]),

[Description] [varchar](1000) NULL,

[Year] [date] NULL,

[Edition] [int] NULL,

[AverageRating] [float] NULL,

) 

CREATE TABLE [CATEGORY]

(

[CategoryId] [int] IDENTITY(1, 1) NOT NULL PRIMARY KEY,

[CategoryName] [varchar](50) NOT NULL UNIQUE,

[Description] [varchar](1000) NULL,

) 

CREATE TABLE [PUBLISHER]

(

[PublisherId] [int] IDENTITY(1, 1) NOT NULL PRIMARY KEY,

[PublisherName] [varchar](50) NOT NULL UNIQUE,

[Description] [varchar](1000) NULL,

[Address] [varchar](50) NULL,

[Phone] [varchar](50) NULL,

[PostCode] [varchar](50) NULL,

[PostAddress] [varchar](50) NULL,

[EMail] [varchar](50) NULL, 

) 
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Visual Studio



CRUD Database Class
Books.cs



GetBooks
public List<Book> GetBooks()
{

List<Book> bookList = new List<Book>();

SqlConnection con = new SqlConnection(connectionString);
string selectSQL = "select BookId, Title, Isbn, PublisherName, AuthorName, CategoryName from GetBookData";
con.Open();
SqlCommand cmd = new SqlCommand(selectSQL, con);
SqlDataReader dr = cmd.ExecuteReader();

if (dr != null)
{

while (dr.Read())
{

Book book = new Book();
book.BookId = Convert.ToInt32(dr["BookId"]);
book.Title = dr["Title"].ToString();
book.Isbn = dr["ISBN"].ToString();
book.PublisherName = dr["PublisherName"].ToString();
book.AuthorName = dr["AuthorName"].ToString();
book.CategoryName = dr["CategoryName"].ToString();
bookList.Add(book);

}
}
return bookList;

}

Books.cs



GetBookData
public Book GetBookData(int bookId)
{

SqlConnection con = new SqlConnection(connectionString);
string selectSQL = "select BookId, Title, Isbn, PublisherName, AuthorName, CategoryName from GetBookData where BookId = " + 

bookId;
con.Open();
SqlCommand cmd = new SqlCommand(selectSQL, con);
SqlDataReader dr = cmd.ExecuteReader();

Book book = new Book();

if (dr != null)
{

while (dr.Read())
{

book.BookId = Convert.ToInt32(dr["BookId"]);
book.Title = dr["Title"].ToString();
book.Isbn = dr["ISBN"].ToString();
book.PublisherName = dr["PublisherName"].ToString();
book.AuthorName = dr["AuthorName"].ToString();
book.CategoryName = dr["CategoryName"].ToString();

}
}
return book;

}

Books.cs



CreateBook
public void CreateBook(Book book)
{

try
{

using (SqlConnection con = new SqlConnection(connectionString))
{

SqlCommand cmd = new SqlCommand("CreateBook", con);
cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.Add(new SqlParameter("@Title", book.Title));
cmd.Parameters.Add(new SqlParameter("@Isbn", book.Isbn));
cmd.Parameters.Add(new SqlParameter("@PublisherName", book.PublisherName));
cmd.Parameters.Add(new SqlParameter("@AuthorName", book.AuthorName));
cmd.Parameters.Add(new SqlParameter("@CategoryName", book.CategoryName));

con.Open();
cmd.ExecuteNonQuery();
con.Close();

}
}
catch (Exception ex)
{

throw ex;
}

}

Books.cs



EditBook
public void EditBook(int bookId, Book book)
{

try
{

using (SqlConnection con = new SqlConnection(connectionString))
{

SqlCommand cmd = new SqlCommand("UpdateBook", con);
cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.Add(new SqlParameter("@BookId", bookId));
cmd.Parameters.Add(new SqlParameter("@Title", book.Title));
cmd.Parameters.Add(new SqlParameter("@Isbn", book.Isbn));
cmd.Parameters.Add(new SqlParameter("@PublisherName", book.PublisherName));
cmd.Parameters.Add(new SqlParameter("@AuthorName", book.AuthorName));
cmd.Parameters.Add(new SqlParameter("@CategoryName", book.CategoryName));

con.Open();
cmd.ExecuteNonQuery();
con.Close();

}
}
catch (Exception ex)
{

throw ex;
}

}

Books.cs



DeleteBook
public void DeleteBook(int bookId)
{

try
{

using (SqlConnection con = new SqlConnection(connectionString))
{

SqlCommand cmd = new SqlCommand("DeleteBook", con);
cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.Add(new SqlParameter("@BookId", bookId));

con.Open();
cmd.ExecuteNonQuery();
con.Close();

}
}
catch (Exception ex)
{

throw ex;
}

}

Books.cs



Program.cs



Program.cs
using MinimalBookWebAPI.Models;

var builder = WebApplication.CreateBuilder(args);
var app = builder.Build();

app.MapGet("/books", () =>
{

List<Book> bookList = new List<Book>();
Book book = new Book();
bookList = book.GetBooks();
return bookList;

});

app.MapGet("/books/{id}", (int id) =>
{

Book book = new Book();
book = book.GetBookData(id);
return book;

});

app.MapPost("/newbook", (Book book) =>
{

book.CreateBook(book);

return "Book has been created";
});

app.MapPut("/book/{id}", (int id, Book book) =>
{

book.EditBook(id, book);
return "Book has been updated";

});

app.MapDelete("/book/{id}", (int id) =>
{

Book book = new Book();
book.DeleteBook(id);
return "Book has been deleted";

});

app.MapGet("/", () => "Welcome to Minimal Book Web API");

app.Run();

Program.cs



Testing the API functions
• We will test the different API functions
• We can test the functions using the Endpoints 

Explorer in Visual Studio
• We can test it using the Web Browser
• We can also test it using an AI tool like 

Postman, etc.
• We can test it using different programming 

languages, like Python, etc.



GET /books

We can test the GET method 
in the Web Browser



GET /books

We can test the method using the 
Endpoints Explorer in Visual Studio



GET /books/{id}

We can test the GET method 
in the Web Browser



GET /books/{id}

We can test the method using the 
Endpoints Explorer in Visual Studio



POST /newbook

We can test the method using the 
Endpoints Explorer in Visual Studio



PUT /book/{id}

We can test the method using the 
Endpoints Explorer in Visual Studio



DELETE /book/{id}

We see Book with BookId=6 has been deleted

We can test the method 
using the Endpoints 
Explorer in Visual Studio



Summary
• We have created a so-called Minimal API in 

Visual Studio using ASP.NET Core and C#.
• The API has basic CRUD functionality that 

Create, Read, Update and Delete data in the 
SQL Server database.

• We tested the API methods using the Endpoint 
Explorer in Visual Studio.

• The code is very simplified for showing the basic 
principles of creating such a CRUD API.
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